The Research Institute of the

Federal Employment Agency

How the digital transformation impacts the labour market – Experiences from Germany

How to govern the country better An example of good practice for employment policy

CERGE-EI, Prague 11th April 2018

Dr. Florian Lehmer

Working Group 'Work in the Digitized World'

- The working group exists since October 2015
- 31 members from 11 research departments/groups
- About 4-5 meetings per year
- The aim of the working group is
 - to promote the exchange of information within and outside the IAB,
 - to discuss research approaches, projects ideas and results in order to provide good policy advice,
 - to establish new data sources so that new projects can be initiated.

Agenda

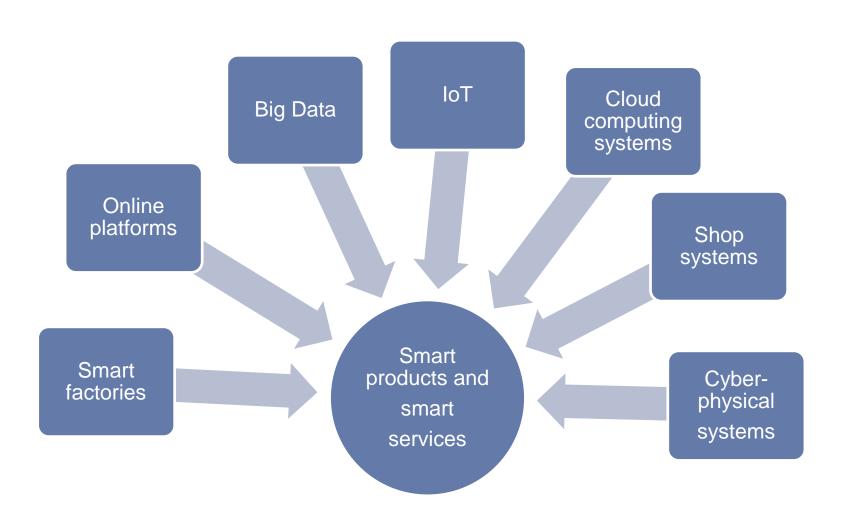
- Current state of digitisation
- Impact on employment growth
- Impact on employment structure
- Further consequences for the labour market
- Key areas of policy action

Digitalisation and employment

What are we talking about?

Quelle: https://www.youtube.com/watch?v=7d59O6cfaM0

The digital transformation is moving forward at a tremendous pace



Areas of development

- Machine learning, algorithms, artificial intelligence (AI)
- Mobile robots, soft robotics, cloud robotics, cloud computing
- Internet of Things (IoT), Cyber-physical (autonomous) production systems
- Assistance systems, remote maintenance
- ... create radically new possibilities of networking within firms/between firms/between firms.
- ... change the roles of producers and consumers (prosumers).
- ... create dynamic interactions between new digital structures and humans (learning systems).
- ... substitute human work/ tasks by technology.

... and is not restricted to the manufacturing industry!

Starting point and research questions

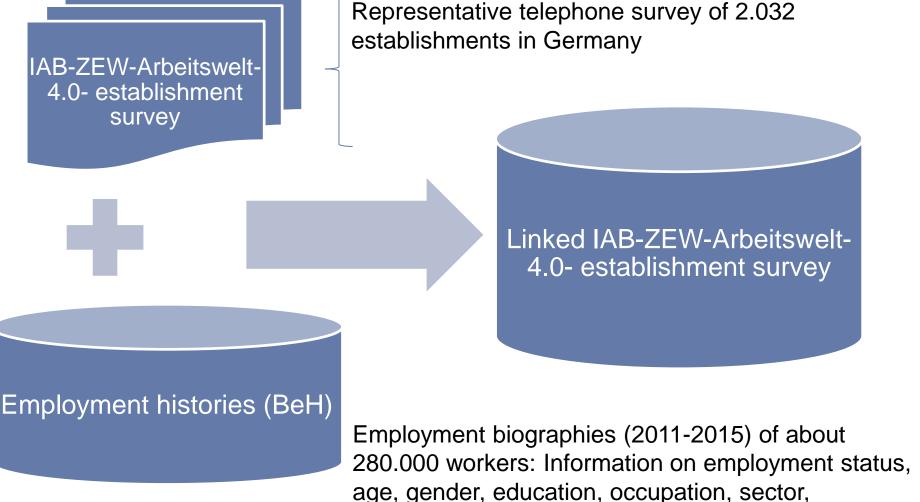
Data: IAB-ZEW "work 4.0" establishment survey

- Representative survey conducted in April/May 2016
- 2.032 CATI-based interviews (21% response rate) with establishments registered at the Federal Employment Agency in 2014
- Only establishments with at least 1 employee subject to social security contributions
- Service providers (67%) and producing establishments (33%)
- Stratication by
 - region (East/West)
 - establishment size (4 categories)
 - sector (5 categories)
- About 50 observations in each cell
- Weighted observations (stratification weights)

Data: IAB-ZEW "work 4.0" establishment survey

Content of questionnaire

- Relevance of "new" digital technologies (including 4.0 technologies)
- Degree of automation of work equipment
- Changes in labor demand (skills, tasks, competencies)
- Background characteristics (sales, profits, etc.)
- Information was gathered for the presence (2016), past (2011) and future (2021)
- We mostly asked production managers or management

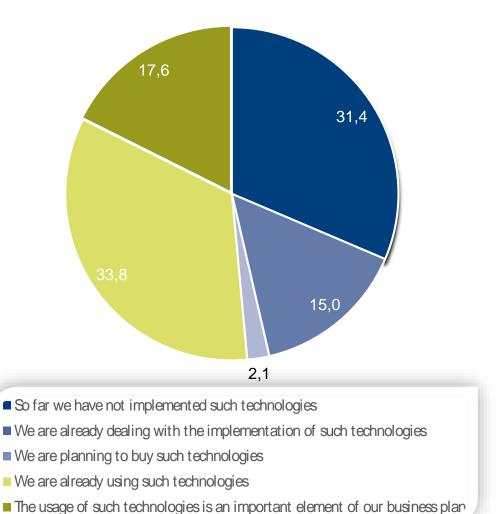

Categorization of work equipment into into technology categories

Production equipment (p)	Electronic office and communication equipment (d)		
1. manually controlled (k_1^p)	1. not IT-supported (k ₁ ^d)		
e.g. drilling machine, motor vehicles or X-ray machine → humans are largely involved in work process	e.g. telephones, fax and copy machines → humans are largely involved in work process		
2. indirectly controlled (k_2^p)	2. IT-supported (k_2^d)		
e.g. CnC machines, industrial robots	e.g. computers, terminals, electronic checkout		
or process engineering systems	systems or CAD-systems		
ightarrow humans are only indirectly involved in work process	ightarrow humans are only indirectly involved in work process		
3. self-controlled (k_3^p)	3. IT-integrated (k ₃ ^d)		
e.g. production facilities up to Smart Factories, Cyber-Physical Systems and Internet of Things → work processes are largely performed automatically	 e.g. analytic tools for Big Data, Cloud Computing systems, internet platforms such as Amazon, shop systems or Online-Markets → work processes are largely performed automatically 		

Degree of automation increases in classification Self-controlled and IT-integrated technologies can be interpreted as 4.0 technologies Construction of a linked employer-employee data set: IAB-ZEW "Arbeitswelt 4.0" establishment survey + employment histories (BeH)

wages,...

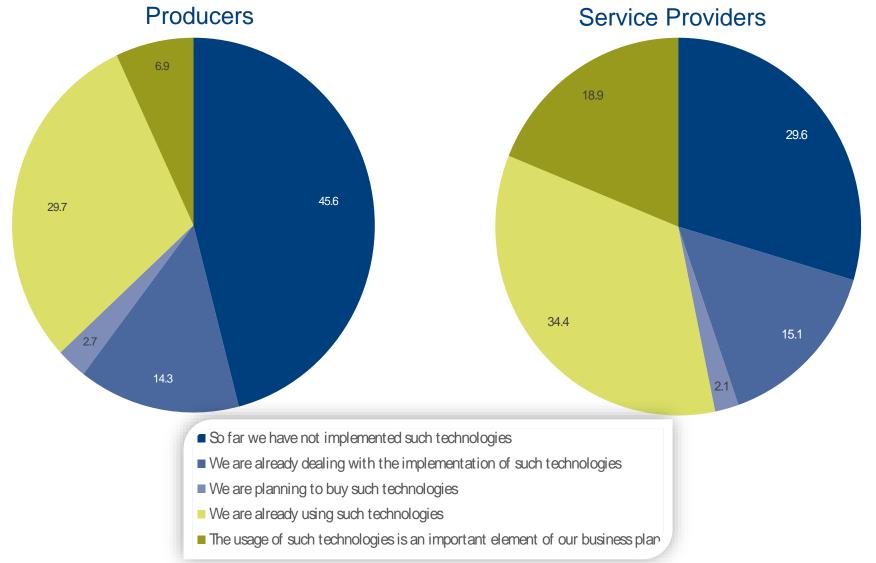
Data


Additional data sources:

- BERUFENET of the Federal Employment Agency: tasks data, 5 categories
- Establishment panel of the IAB: historic information on capital stock, investments, profits (imputation of missing information, construction of IVs)
- Establishment History Panel of the IAB (1999-2015)

Usage of new digital technologies in German firms

Responses in 2016 (in percent)



Source: IAB-ZEW-establishment survey "work 4.0", own calculations

Usage of new digital technologies in German firms

Responses in 2016 (in percent)

Agenda

- Current state of digitisation
- Impact on employment growth
- Impact on employment structure
- Further consequences for the labour market
- Key areas of policy action

The Phantom Menace?

FUTURE TENSE

THE CITIZEN'S GUIDE TO THE FUTURE.

APRIL 28 2016 9:00 AM

Slate

FROM SLATE, NEW AMERICA, AND ASU

Killer Robots? Lost Jobs?

The threats that artificial intelligence researchers actually worry about.

By Cecilia Tilli

 $Photo illustration by Sofya \, Levina. \, Images \, by \, Mike \, Windle/Thinkstock, \, Bryan \, Bedder/Thinkstock, \, and \, Joshua \, Lott/Getty \, Images. \, Control of the property of the property$

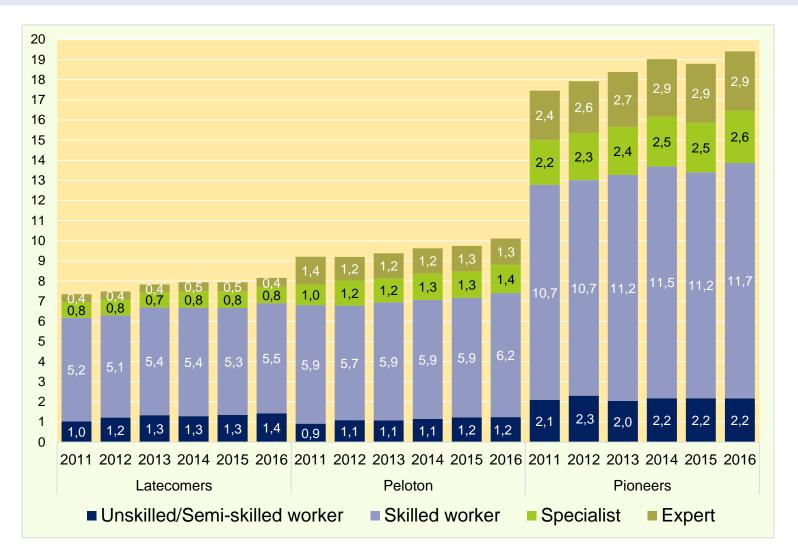
-TUDOCDAD

President Trump has declared war on the press. Help us fight back.

Headlines in newspapers, magazines and blogs

- "Robots And Computers Could Take Half Our Jobs Within the Next 20 Years" http://theeconomiccollapseblog.com/
- "Robots Could Put Humans Out of Work by 2045" https://singularityhub.com
- "White House Predicts Robots May Take Over Many Jobs That Pay \$20 Per Hour" https://www.huffingtonpost.com/
- "Robot Serves Up 360 Hamburgers Per Hour" https://singularityhub.com/
- "Why the Highest-Paid Doctors Are the Most Vulnerable to Automation" www.slate.com/
- "Robot Receptionist in Tokyo Department Store." www.bbc.com/

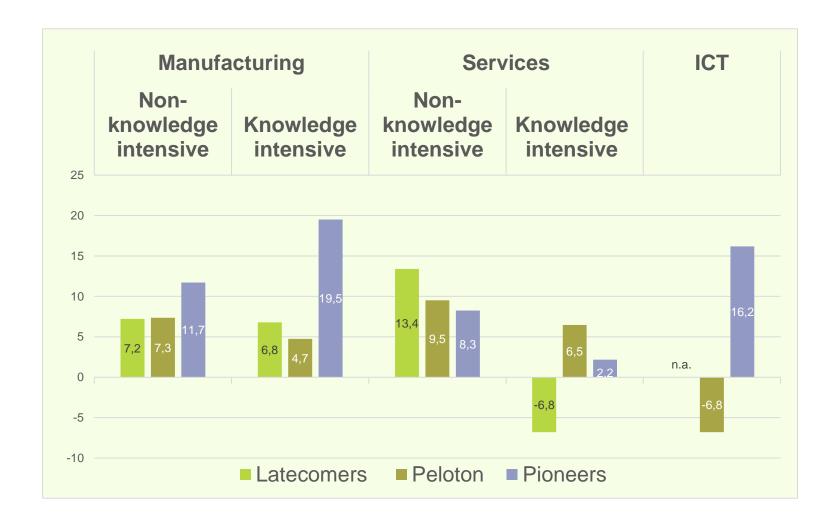
Theoretical impacts of new digital technologies on employment


- Productivity ★
 - Jobs are substituted → employment ↓
 - Product prices √, product demand ↑ → employment ↑
- Supply of new products and services
 - Old products are losing market share → employment ▼
 - New products are gaining → need for investments → employment →
- Offshoring: employment

 √ vs. Reshoring: employment
 ↑
- → Net effect ???

Effects of the investments in new digital technologies on employment at the establishment level

Average employment levels for digital latecomers, the peloton and digital pioneer firms 2011-2016, in absolute numbers



Source: Linked IAB-ZEW-establishment survey "work 4.0", own calculations

... sector-specific results

Average employment growth for digital latecomers, the peloton and digital pioneer firms 2011-2016, in percent

Source: Linked IAB-ZEW-establishment survey "work 4.0", own calculations

Expectations

(derived from BIBB-IAB Qualification and Occupational Field Projections)

- Increases in productivity, value added and wage totals
- Structural change accelerates from manufacturing to services
- Labour flows between sectors and occupations are much larger than the changes in the number of persons employed
 - →Until 2025, about 1,500,000 jobs will be lost, but 1,500,000 jobs will be created
 - →Occupations normally will not disappear completely, but occupations will change; new occupations emerge
- Employment gains for highly-skilled workers, losses for skilled and low-skilled workers

Future demand for tasks?

Impact of ...

- technological developments (digitalisation/ automation)
- ... globalisation (offshoring)
- ... change of product demand

Which factors determine the future demand for tasks?

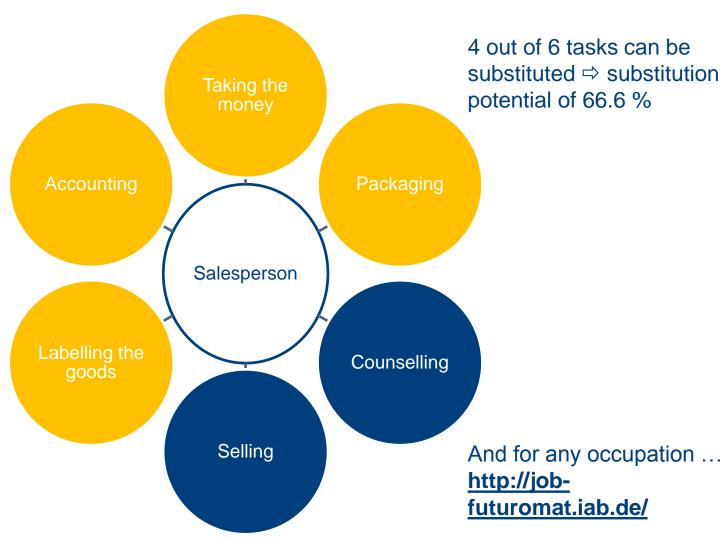
Results from the tasks literature (see Autor, Levy, Murnane, 2003):

- High substitutability for manual and routine tasks
- Low substitutability for
 - Interactive tasks
 - Knowledge-intensive tasks
 - Creative tasks

Tasks	Content	Example	Substitution potential	
Analytical non- routine tasks	e.g. research, analysis, evaluation, planning, designing,	nning, designing, Economist		
Interactive non- routine tasks	constructing, negotiating, coordination, teaching, marketing etc.	Manager Engineer Teacher	low	
Manual non- routine tasks	e.g. repairing, renovating, personal servicing, hosting	Caretaker Beautician Security Guard	medium	
Cognitive routine tasks Manual routine tasks	e.g. simple calculations, data analysis, machine operators	Clerk Secretary Machine Operator	high	

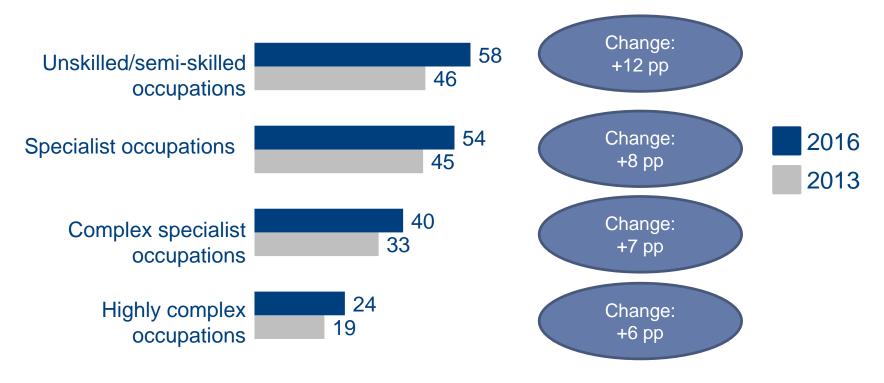
Our expectations: employment trends for different tasks types

Tasks	Up to now	Future
Routine	-	
Manual		
Social intelligent	+	++
Creative intelligent	++	+++
Person-related/ interactive	++	++
Flexible	+	+++


What determines the impact of digitalisation?

- It seems unlikely that whole occupations disappear
- It is more likely that tasks within occupations are more or less prone to be substituted by computers or computer-controlled machines
- Which tasks belong to an occupation (in Germany)?
 - information from BERUFENE for Germany
 - Contains information for 3,900 occupations about:
 - which tasks are typically associated with each occupation
 - which equipment/appliances are commonly used
 - typical conditions at work
 - required training or regulations
- Substitution potential determined by technical feasibility and not cost, legal, ethical or other considerations

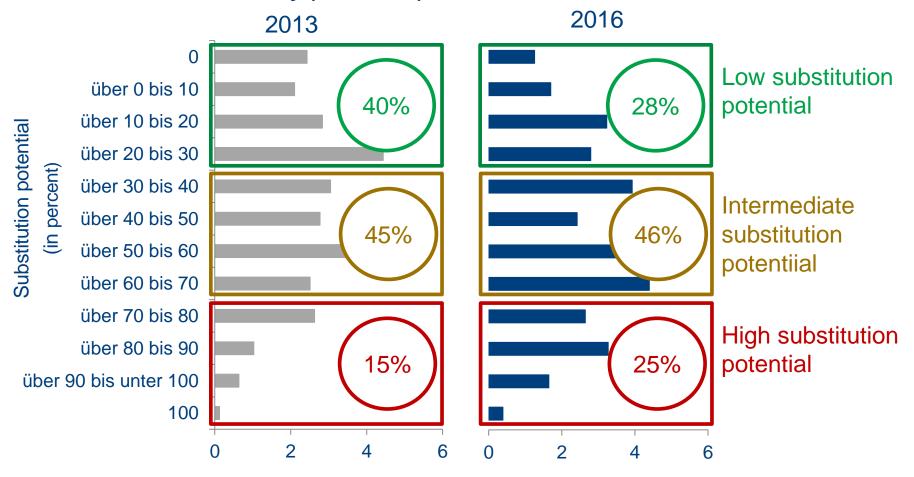
Example: Which tasks does a (typical) salesperson perform?



Substitution potential in unskilled/ semi-skilled occupation has increased the most

Substitution potential by requirement level

Proportion of tasks that could already by substituted by computers or computercontrolled machines today (in percent)



Quelle: Dengler/Matthes (2015, 2018), Berufenet (2013, 2016).

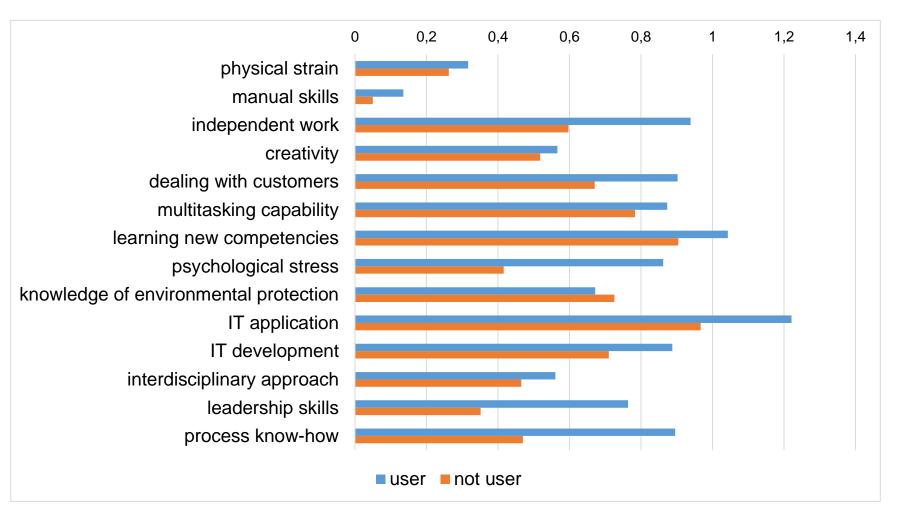
High substitution potential for 25 percent of employees in 2016

Impacts of substitution potential for employees subject to social contributions in Germany (in millions)

Quelle: Dengler/Matthes (2015, 2018), Berufenet (2013, 2016), Statistik der BA (2013, 2016).

Agenda

- Current state of digitisation
- Impact on employment growth
- Impact on employment structure
- Further consequences for the labour market
- Key areas of policy action


Further consequences for the labour market

- Removal of boundaries between work and leisure / mobile working
- Physically demanding or dangerous work can increasingly be executed by machines/ robots
- New forms of work (gig-/crowd-/cloud-/platform work): up to now, this is more of a marginal phenomenon in Germany (and therefore it has not yet been researched).

Further consequences for the labour market: Change of requirements in the last five years

Quelle: IAB-ZEW Arbeitswelt 4.0-Befragung, eigene Berechnungen

The impact of new digital technology investments on wages

- Individual fixed effects-regressions;
- Explained variable: log. of wage growth 2011 to 2016

Variable	All work-	Male Wor- kers	Female Workers	Low-skil- led Work- ers	Skilled workers	Highly- skilled workers
Dummy indicator: Wage growth effect of peloton firms vs. latecomers Dummy indicator: Wage growth effect	0.0059**	0.0055**	0.0067	0.0307***	0.0064***	-0.0032
of pioneers vs. latecomers	0.0072***	0.0077***	0.0061	0.0314***	0.0099***	-0.0104
N	180,473	129,086	51,387	7,546	134,444	38,483
R-squared	0.2885	0.3026	0.2660	0.3325	0.3480	0.1981
F	1182,71	950.08	336,80	64.58	1162,13	152.61

Notes: ***p<0.01, **p<0.05, *p<0.1

Source: 'IAB-ZEW Labour Market 4.0' establishment survey, BeH, BERUFENET, IAB Establishment Panel,

own calculations

Policy areas

- Preventive labour market policy
- Skills development and adaptation
- Social security in the digital age
- Industrial relations and social dialogue in the digital age

Preventive labour market policy (1)

- Massive reduction in number of jobs is unlikely but large changes likely between and within sectors, occupations and skill levels.
- Current regional industrial structure has a large effect on the likely effects on the local labour market ⇒ requires regional strategies
- Labour market is likely to become (even) more dynamic
 - Problematic especially for long-term unemployed because requirements increase and human capital devaluates)
 - Risk of skills shortages increases

Preventive labour market policy (2)

⇒ Need for more further trainings

⇒ Shorter intervals between trainings

Politics: Support of further training activities of firms: independent highquality qualification counselling for firms and individuals; contribution to the costs of training activities and work loss.

Special responsibility for disadvantaged population groups (low-qualified workers, workers in small firms, etc.)

Skills development and adaptation

- Higher qualification requirements for employees
- Tasks and competencies more important:
 - Less routine and more creative tasks
 - Basic digital competences needed in many occupations
 - Ability to work in a team with integrated processes
- ⇒ Need for customised training requirements for different groups!
 - ⇒ Digital competences
 - ⇒ Social competences
 - ⇒ Creative competences
 - ⇒ Language competences

Social security in the digital age

- Little is known yet about the interplay between digitalisation and demographic change
- The likely losers: long-term unemployed and low-qualified employed persons
- But: The digital transformation does not necessarily lower the wages of low-qualified workers (as long as they remain employed)
- Rising inequality, distributional problems
- ⇒ Inclusion of new forms of work in social security systems
- ⇒ Government-sponsored employment possibilities (for persons who are left behind)

Industrial relations and social dialogues in the digital age

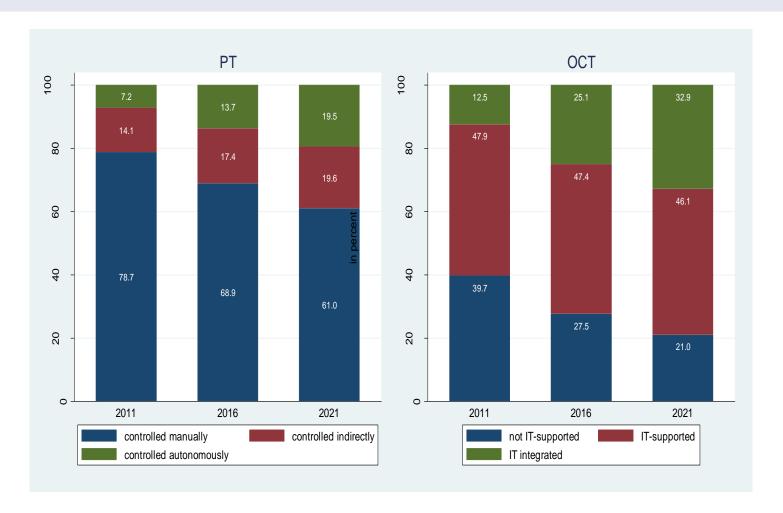
- ⇒ Adjustments in the digital transformation only works through a well working social partnership
- □ Increase flexibility! But very sensitively! Both, firms and individuals must benefit (e.g., further training sabbaticals)
- ⇒ Special responsibility of employers and workers' organisations for further training programmes

Thank you!

Dr. Florian Lehmer florian.lehmer@iab.de
Phone +49 (0)911/179-5664

http://www.iab.de/839/section.aspx/Bereichsnummer/10449690

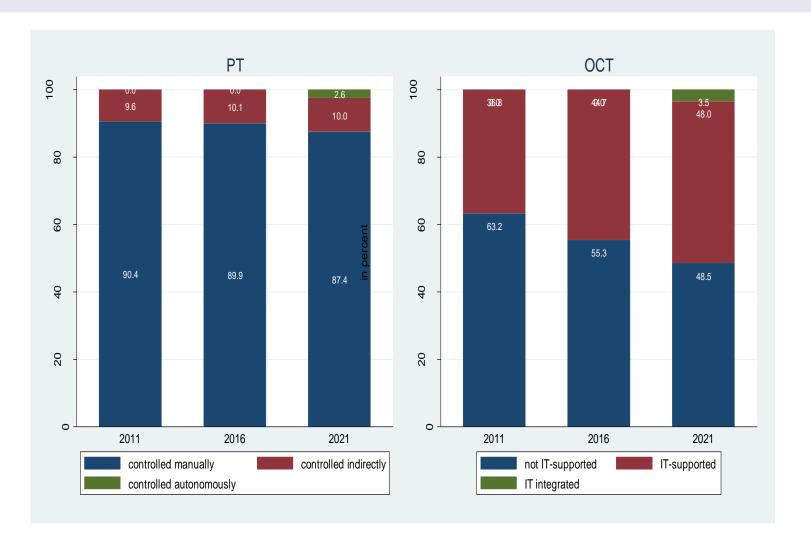
Automation level of German firms



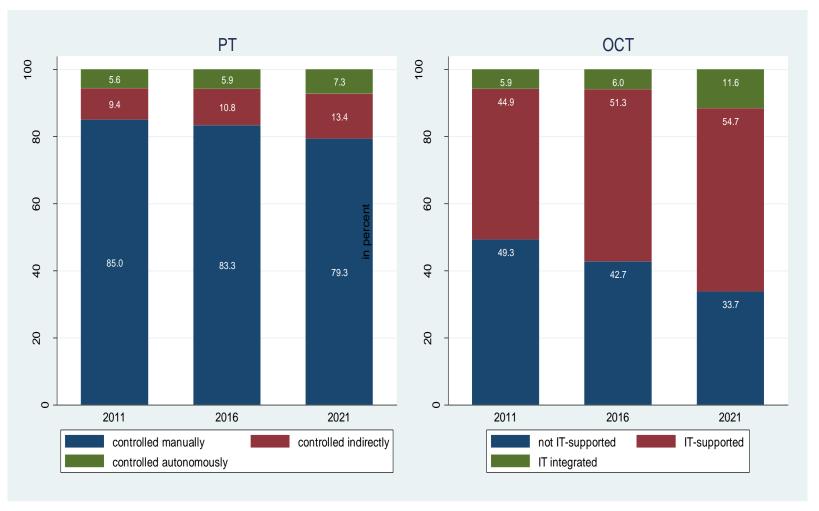
Group allocation

- Latecomer (280 establishments)
 - Do not use new digital technologies
 - Do not invest into new digital technologies between 2011 and 2016
- Pioneer (383 establishments)
 - Already use new digital technologies
 - Invest into new digital technologies between 2011 and 2016
- Main field (862 establishments)
 - Rest category

Technological level of work equipment for digital technology **pioneers**



- Increasing share of 4.0-technologies
- O & C equipment more automated than production equipment


Technological level of work equipment for digital technology **latecomers**

